
人教版数学六年级下册教案
作为一名教学工作者,通常会被要求编写教案,教案有利于教学水平的提高,有助于教研活动的开展。那么写教案需要注意哪些问题呢?以下是小编精心整理的人教版数学六年级下册教案,仅供参考,希望能够帮助到大家。
人教版数学六年级下册教案1教学目标:
1、巩固对储蓄存款的认识,了解教育储蓄、国债利率
2、在自主活动中进一步熟悉掌握存款利息计算方法
3、培养学生认识到存款利国利民
教学重点:
掌握有关存款形式、利息的计算方法
教学难点:
运用有关知识解决实际问题
教学过程:
一、明确问题
李阿姨要存2万元,供儿子六年后上大学,怎样存款收益最大?
三种理财方式:普通储蓄存款、教育储蓄、购买国债
二、交流汇报有关利率、教育储蓄、国债相关小知识
1、学生汇报自己收集到的相关知识
2、教师释疑
A、收集到的利率为什么与教材上的不同?
B、不同银行存款利率不一样
C、国家利率调整的原因
D、教育储蓄存款存期的计算
三、设计方案
根据利息=本金x利率x存期计算每种方案最后利息
1、学生分组讨论交流,设计不同方案
2、教师巡回指导,选择代表性方案演板
方案一:一年期存6次利息:3880。95元
方案二:二年期存3次利息:4845。9元
方案三:三年期存2次利息:5425。13元
方案四:先存五年期一次,再存一年期一次利息:5492。5元
教育储蓄:五年按六年计算利息:5700元
购买国债:六年利息:6384元
四、讨论:选择方案,比较利弊
根据各种实际情况,灵活选择
五、当堂检测
六、活动总结
七、谈谈本节课的收获与困惑
人教版数学六年级下册教案2难点名称
了解合理购物的意义,能自己做出购物方案,并对方案合理性做出充分的解释。
难点分析
从知识角度分析为什么难
让学生综合运用折扣知识解决生活中的“促销”问题,使学生对不同的促销方式有更深入地认识,经历综合应用知识的过程,具有一定的难度。
从学生角度分析为什么难
解题过程中对学生掌握百分数应用题的数量关系,解决问题的熟练度有较高的要求。“商场促销”虽对学生来说都不陌生,但学生购买促销商品的经验还不足,对各促销方式的实质理解具有一定的难度。
难点教学方法
1、通过复习整理、引导分析、巩固练习,运用百分数的相关知识解决生活中的“促销”问题。
2、通过自主学习、小组讨论、反思总结体会各促销方式的实质。
教学过程
一、导入
1.妈妈想买一件原价700元的裙子,五折之后这条裙子多少钱?(重点理解答五折的意思)
2.指名学生回答
700×50%=350(元)
答:五折之后这条裙子350元
二、知识讲解(难点突破)
3.下面我们来看例题
(1)课件出示例5:某品牌的裙子搞促销活动。在A商场打五折销售,在B商场按“满100元减50元”的方式销售。妈妈要买一条标价230元的这种品牌的裙子。
读完这段话我们可以提出哪些数学问题呢?
小明提出了这样两个:
①在A、B两个商场买,各应付多少钱?
②选择哪个商场更省钱?
我们一起来解决这些问题。题目给出的数学信息中,哪些是关键呢?
A商场打五折销售,在B商场按“满100元减50元”的方式销售。
打五折它表示现价是原价的50%,那么每满100元减50元是什么意思?快来思考一下吧!
就是在总价中取整百元的部分,每个100元减去50元,不满100元的零头部分不优惠。
(2)在A商场买,直接用总价乘50%就能算出实际花费。列式:230×50%=115(元)
在B商场买,先看总价中有几个100,230里有2个100,然后从总价中减去2个50元。
列式:230-50×2=130(元)230-50×2=130(元)
答:在A商场买应付115元,在B商场买应付130元;打五折的方式更省钱。
(3)你还有疑问吗?
①满100元减50元,少了50元,也是打五折,怎么优惠的结果不一样呢?
原来打五折就是无论标价是多少,实际售价都是原价的50%。“而满100元减50元”就只能是原价中满了100元的部分能优惠50元,能打五折,而不满100元的部分就没有折扣了。
②什么情况下两种优惠会一样呢?
如果商品的售价刚好是整百元的时候,两种优惠结果是一样的。
(4)回顾与反思
看起来每满100元减50元不如打五折优惠。如果总价能凑成整百多一点就相差不多了。
以后我要陪妈妈购物,帮妈妈算账。
三、课堂练习(难点巩固)
4.巩固练习:某品牌的旅游鞋搞促销活动,在A商场按“每满100元减40元”的方式销售,在B
商场打六折销售。妈妈准备给小丽买一双标价120元的这种品牌的旅游鞋。
(1)在A、B两个商场买,各应付多少钱?
(2)选择哪个商场更省钱?
A商场:120-40=80(元)
B商场:120×60%=72(元)
80>72
答在A商场买应付80元,在B商场买应付72元,选择B商场更省钱。
四、小结
1.在购物时,可以运用学过的百分数知识对商家的优惠方式进行分析对比,从而选出实惠、省钱的方案。
2.商家的促销方式:“打几折”,“每满100元返50元礼券”,“每满100元减50元”,“买五件送一件”都转化为百分数的知识来理解。
人教版数学六年级下册教案3教学内容:
人教版《义务教育课程标准实验教科书数学》六年级下册第2~4页例
1、例2。
教学目标:
1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。
2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。
3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。
……此处隐藏14506个字……经验,说说负数在生活中的表现,通过学生的交流与汇报。学生将负数置于具体的生活经验之中。在一过程分两个阶段完成:
一、生活中你见过哪些负数?
二、结合你自己的理解,举一些可用负数表示的例子。通过上述两个阶段的活动,学生对负数获得了基于自身经验的不同理解。
三、在具体的情境中感受数的相对大小关系
初步认识负数后,我让学生在数轴上表示正负数,通过数形结合,学生对于正数和负数获得了更深的认识。在用数轴上表示正负数的时候我觉得下面两个问题应该引起重视。一是,表示正数时为什么要从左往右看,而表示负数时为什么要从右往左看。(这一问题可以联系正负数是表示相反意义的量来理解),二是,“+2和—2哪个数大?”这一问题不应仅停留在对数轴的直接观察之上,最好还应该联系生活的实际来进行理解。这样学生才会对这一客观的数学问题获得主观的认识,从而提高知识的活力。
四、借助于具体的数据,使学生获得一些生活的常识和社会的知识
教材中安排的许多习题有的是一些基本的生活常识,如水的凝固点、沸点、动物生活的一般温度等;有的是一些社会的知识,如我国的最低点、南极的温度等。在教学中我们不仅仅要让学生会读数,还应该让学生对于这一些知识有所了解,从而实现数学的综合化。
在本课的教学中有一个难点的处理应该引起注意。“在温度计上表示—11度”,对于这一温度的表示,学生经常会错误地表示成—9。对于这一表示错误我们应该让学生进行反思,查找错误的原因,从而让学生领会用负数表示时的思考方法。首先要确定观察的方向,其次确定数的表示位置。我想通过这样的处理学生对于“正负数是表示相反意义的量”这一特征会获得更加清晰的认识。
人教版数学六年级下册教案14一、教学目标
(一)知识与技能:使学生认识圆柱的底面、侧面和高,掌握圆柱的基本特征。
(二)过程与方法:
1.让学生经历探索圆柱基本特征的过程,提高学生观察、操作、分析和概括的能力。
2.通过学生自主研究,使学生掌握研究立体几何的一般方法,提高学生学习数学的积极性。
(三)情感态度和价值观:进一步培养学生主动探索精神,发展学生的空间观念,提高学生的学习兴趣。
二、教学重难点
教学重点:掌握圆柱的基本特征。
教学难点:高的认识。
三、教学准备
教师:课件,长方体模型,圆柱模型。
学生:每生自带一个圆柱形物体,草稿纸。
四、教学过程
(一)复习旧知,引出课题
1.师:同学们,我们学过哪些立体图形?它们各有几个面?这些面是什么形状?生回答。(根据学生回答板书研究方法)动手操作:画、剪、比、量。
2.(课件出示)师:那下面的这些物体你认识吗?它们是什么形状?如果把这些物体的形状画下来会是什么样子的呢?课件演示:从实物图抽象出圆柱图形。
3.小结:上面这些物体的形状都是圆柱体。揭题:今天我们要一起来研究圆柱。(板书课题)
(二)自主学习
学生仔细观察手中的圆柱模型,边看书边思考:
①圆柱的上、下两个面叫做什么?
②用手摸一摸圆柱周围的面,你发现什么?
③圆柱一共有几个面?是哪几个面?
④圆柱两个底面之间的距离叫做什么?在哪里?
及时练习(课件出示):让学生根据圆柱的特点判断下面的图形。
【设计意图】学生通过看一看,摸一摸,找一找,初步了解圆柱的特征,为后面突破难点打下基础。
人教版数学六年级下册教案15课前准备
教师准备 PPT课件
教学过程
⊙谈话揭题
上节课,我们从意义、读法、写法、大小比较、改写以及省略尾数保留近似数等几个方面复习了整数的相关知识,这节课我们按类似的思路来复习小数的相关知识。(板书课题:小数的认识)
⊙回顾与整理
1.小数的意义。
过渡:同学们,在生活中我们常常遇到不能用整数表示物体个数的时候,例如:我吃了半个苹果,做一件上衣要用一米半的布料……提问:半个、一米半怎样来表示呢?谁来说说小数的意义?
预设
生1:半个可以用0.5来表示,一米半可以用1.5来表示。
生2:把整数“1”平均分成10份、100份、1000份……这样的几份是十分之几、百分之几、千分之几……可以用小数来表示。
2.小数的数位顺序表。
师:小数的数位顺序表是怎样的?谁能把整数、小数的数位顺序表补充完整?
(课件出示数位顺序表,小数部分留白。指名回答,师填充)
3.小数的读法和写法。
(1)师:怎样读小数?怎样写小数?
预设
生1:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分按从左到右的顺序顺次读出每一个数位上的数字。
生2:写小数的时候,整数部分按照整数的写法写,小数点写在个位的右下角,小数部分顺次写出每一个数位上的数字。
(2)写小数时需要注意什么?
(空位用“0”补足)
4.小数的分类。
(1)谁知道根据小数部分的位数是否有限,小数可以分成哪几类?
预设
生:根据小数部分的位数是否有限,小数可以分成“有限小数”和“无限小数”两类。
(2)谁能举例说明什么是有限小数?什么是无限小数?
预设
生1:小数部分的位数是有限的小数,叫做有限小数。例如:21.7,35.3,0.13都是有限小数。
生2:小数部分的位数是无限的小数,叫做无限小数。例如:8.33…,3.1415926…都是无限小数。
(3)无限小数还可以再细分吗?如果细分,那么可以分成哪几类?
预设
生:无限小数可以分为无限不循环小数和循环小数。
(4)关于无限不循环小数和循环小数,你都了解哪些知识?
预设
生1:一个数的小数部分,数字排列没有规律且位数无限,这样的小数叫做无限不循环小数。例如:π
生2:一个数的小数部分从某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数。例如:2.555… 0.0333… 17.109109…
生3:一个循环小数的小数部分依次不断重复出现的数字叫做这个循环小数的循环节。
例如:3.99…的循环节是“9”,0.5454…的循环节是“54”。
5.小数的性质。
(1)师:谁能说说小数有怎样的性质?
预设
生:在小数的末尾添上0或者去掉0,小数的大小不变。
(2)理解小数的性质时,应该注意什么?
(提示:要注意是“小数的末尾”,而不是“小数点的后面”)
6.小数点位置的变化。